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Abstract Harvesting plans for Canadian logging companies tend to cover wider territories
than before. Long transportation distances for the workers involved in logging activities
have thus become a significant issue. Often, cities or villages to accommodate the workers
are far away. A common practice is thus to construct camps close to the logging regions,
containing the complete infrastructure to host the workers. The problem studied in this paper
consists in finding the optimal number, location and size of logging camps. We investigate
the relevance and advantages of constructing additional camps, as well as expanding and
relocating existing ones, since the harvest areas change over time. We model this problem as
an extension of the Capacitated Facility Location Problem. Economies of scale are included
on several levels of the cost structure. We also consider temporary closing of facility parts
and particular capacity constraints that involve integer rounding on the left hand side. Results
for real-world data and for a large set of randomly generated instances are presented.
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1 Introduction

1.1 Context and scope

Context Log harvest planning in the forestry sector has changed throughout the last
decades. Both silviculture and harvesting in Canada have become more sophisticated and
now pose complex planning problems to get the most from the available regions and harvest
cycles. Based on a wide variety of considerations, a long-term plan is designed to deter-
mine the volume and regions for wood logging. These decisions are commonly divided into
smaller time periods, as logging activities and road construction within a single logging
region typically take several months.

Due to political and environmental issues, as well as the size of the country, harvesting
plans tend to cover wider territories than they used to. Often, sparse logging is necessary
to certify the forestry operations. Several questions arise such as the location and capac-
ity for administrative services, sorting yards and central log processing stations. Similarly,
the location where the workers involved in forestry activities are accommodated gains in
importance. If villages or cities are close, workers can be hosted at their homes or at mo-
tels. However, logging regions in Canada are often widely distributed and located far from
such hosting options. In that case, accommodating the workers in the closest village or city
is rarely an attractive option, as the commuting time and transportation costs are too high.
Transportation times would consume a significant portion of the potential productive time.
Furthermore, an additional salary is commonly paid when the transportation times exceed a
certain threshold.

A common solution to this problem is the construction of logging camps in which the
workers are accommodated. Logging camps are typically located close to the logging re-
gions so that the transportation costs for the workers are reasonable. When allocating each
work crew to a camp, the accommodation costs are given as a cost per day per worker. In
order to host all workers, the construction of new accommodations may be necessary. The
larger a camp, the smaller the daily cost per person. Hence, a small number of large camps
results in smaller accommodation costs than a large number of small camps. However, the
fewer camps are available, the higher the transportation costs tend to be, because their loca-
tion is less flexible. The construction of a new camp or the relocation of an existing one may
pay off in the long term as the traveling costs to the logging regions may be much lower.

Scope This work investigates the possibility of constructing and relocating camps for the
accommodation of workers, considering the harvest planning for the next five years. The
problem is motivated by the needs of a Canadian logging company. It consists in finding
the number of camps that have to be constructed or relocated, their size and their location
such that the total costs for accommodation and transportation are minimized. The interest-
ing question is whether such an investment in camp construction and relocation pays off,
considering the operational logging and road construction planning for the next five years.
It is important to note that the actual work crew assignment between accommodations and
work regions is not relevant in practice. It is only used to determine the minimum capacity
level necessary to host all workers. For the operational work crew assignment, other plan-
ning tools will be used. It is assumed that all information about work crews, logging regions
and distances are known at the beginning of the planning and are not subject to uncertainty.

1.2 Contributions and organization of the paper

Contributions Due to the complexity of the problem, manual planning approaches usually
do not yield optimal solutions. The main objective of this paper is to propose a formulation
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for the problem that can be solved by a general-purpose solver for instances of reasonable
size. The impact of different instance and model properties on the difficulty of the problem
is studied. The presence of economies of scales on several levels of the cost structure as well
as partial facility closing are part of the main concerns. Further aspects include particular
capacity constraints that involve integer rounding on the left hand side. It is shown how such
capacity constraints can be useful in other applications, but increase the integrality gap of
the problem. We derive valid inequalities to effectively reduce this integrality gap.

Organization This paper is organized as follows. Section 2 describes the relevant problem
details. As the problem can be modeled as a facility location problem, the literature review
in Sect. 3 focuses on relevant extensions in that domain. The mathematical formulation in
Sect. 4 gradually extends the Capacitated Facility Location Problem to model the problem
being addressed. This includes the particular capacity constraints, valid inequalities and
additional features such as the relocation and partial closing of camps. Section 5 summarizes
the results of the computational experiments performed. Two case studies in Sect. 6 illustrate
the benefits of the proposed model when applied in practice. Finally, Sect. 7 concludes the
work.

2 Problem description

Based on an existing strategic plan, the logging company provides a harvesting plan for the
next five years. Each year is divided into two seasons: winter and summer, each with a certain
number of available working days. Depending on the geographical location, some regions
will be logged more in winter whereas other regions will be logged more in summer. Each
region is defined by its estimated log volume (measured in m3) that is subject to harvesting
(it may be part of the strategic decision that not the entire region will be harvested) within
each season and the length of the road (measured in km) that has to be constructed in that
region in order to access the logging areas and transport the log.

2.1 Work crews, demands and hosting capacities

There are two types of work crews: logging and road construction. Crews of the same type
contain the same number of members. The members of a crew always stay together during
work and are hosted at the same accommodation. For each logging region and season, a log-
ging and road construction demand is given. Based on given productivity rates for the work
crews one can compute the average number of crews necessary to cover the demand at each
region for each season.

Example Logging crews work 100 days within a given season and cut 180 m3 per day, i.e.,
18,000 m3 within the season. A certain region holds a total demand of 27,000 m3 for the
season. Throughout 50 days, two logging crews will be working (i.e., 2 · 50 · 180 m3 =
18,000 m3). The other 50 days, a single logging crew will be working (i.e., 1 · 50 · 180 m3 =
9,000 m3). This results in an average allocation of 27,000/18,000 = 1.5 logging crews in
that season.

As the operational assignment of logging crews is not our final concern, we can assume
that the crews of each working type are flexible with respect to the days they work within
each season. That is, if a crew works only a few days in a season, we may assume that
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Fig. 1 Example of logging demands hosted at the same accommodation

the exact days do not matter. In our example, it does not matter in which of the 100 days
we use two crews and in which we use only one crew. In practice, a work crew may work a
number of days in one region and then in another region in the same season. To determine the
minimum capacity necessary to host all work crews allocated to a certain accommodation,
consider the following example.

The workers from two regions are hosted at the same camp. One region has an aver-
age demand of 1.5 logging crews and 0.7 road construction crew. The other region has an
average demand of 1.25 logging crews and 0.5 road construction crew. Figure 1(a) illus-
trates this scenario for the logging crews. In total, we have a demand of 1.5 + 1.25 = 2.75
logging crews and 0.7 + 0.5 = 1.2 road construction crews. Hence, for 75 % of the time
during the season there will be �2.75� = 3 logging crews and 25 % of the time there
will be �2.75� = 2 logging crews, which is illustrated in Fig. 1(b). In the same way, for
20 % of the season there will be �1.2� = 2 road construction crews and for the other 80 %
there will be only �1.2� = 1 road construction crew. Assuming that a logging crew has six
workers and a road construction crew has three workers, we will need accommodation for
�2.75� · 6 + �1.2� · 3 = 18 + 6 = 24 workers. To determine the minimum capacity of an
accommodation, we can add the average numbers of crews allocated to this accommodation
and round up the sum to the next highest integer (for each crew type).

Transportation Workers are usually transported by pick-ups, using a given road network.
Costs are composed of the travel and working time of the workers as well as the vehicle
costs, i.e., renting and gas. An additional salary has to be paid if a certain transportation
time (usually one hour per day) is exceeded. This makes large travel distances very costly.
Workers of the same crew are transported in one or more vehicles. Workers of different
crews do not share the same vehicle.

Supervisors In addition to the work crews, there are fixed numbers of logging and road
construction supervisors. Supervisors have to be considered for the accommodation capaci-
ties and their individual transportation costs. Although it is not clearly predictable how many
days a supervisor will be at which region, one may assume that their presence in a region
is proportional to the demand for work crews at that region. Hosting regions for supervisors
are often limited to accommodations with administrative units.

2.2 Camps and trailers

Certain accommodations for the workers may already exist. These accommodations can
either be hosting options in villages or cities (e.g., apartments, hotels or the employees’ own
homes) in reasonable distance of the logging regions, or camps that are usually located in
the forest close to the logging regions. Accommodations vary in their capacity and their
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hosting costs. Camps are composed of trailers. A trailer contains the infrastructure to host a
certain number of workers. In practice, trailers of different capacities are available. However,
for the purpose of this study, we may assume that the trailer with a capacity for twelve
persons is the most common one and hence all trailers have the same capacity. In addition
to the trailers that host workers, a camp contains a number of additional trailers that provide
complementary, but necessary infrastructure, such as a kitchen and leisure facilities. The
number of additional trailers directly depends on the total hosting capacity of the camp, i.e.,
the number of hosting trailers. In the following, we will measure the capacity of a camp by
the number of hosting trailers. Hence, the construction costs for a number of hosting trailers
already include the costs for the necessary number of additional trailers.

Trailers can be either open or closed. Only open trailers are available for use. Trailers that
are not in use have to be closed, involving one-time closing costs. Once a trailer is closed,
it cannot be used in subsequent seasons until it is reopened, involving one-time reopening
costs. Closing or reopening operations can be performed before each season. Costs for such
operations usually involve economies of scale in the number of hosting trailers, since com-
mon resources are shared. The use of hosting trailers to accommodate workers involves two
types of daily costs: fixed costs for each open trailer (including the cost for the trailer itself,
its equipment, the cook, etc.) and variable costs (food, etc.) for each worker. The fixed costs
are paid for each open trailer per day. Costs for closed trailers are so small that they do
not have to be considered. Variable costs are paid for each worker hosted at the camp. If a
trailer is open, its fixed costs have to be paid throughout the entire season, independent of
its use. All costs may follow the principle of economies of scale, i.e., the larger the quantity,
the lower the price-per-worker/trailer. New camps can only be constructed at certain places
from a given set of potential locations. It is very common that several logging regions are
served by workers from the same accommodation. Though it is rare, one logging region may
also be served by workers from different accommodations.

2.3 Capacity expansion and camp relocation

At certain points during the planning it may be interesting to increase the capacity of existing
camps. Such capacity expansion is performed by adding new trailers. It is assumed that the
cost of adding n trailers is the same as the construction of a new camp with n trailers.
Trailers may also be permanently shut down. For the sake of simplicity, it is assumed that
this is done by closing these trailers.

Logging regions are not equally harvested every year. That is, a camp may be close to
logging regions with demands in certain years, but far away from logging regions that will be
harvested afterwards. Instead of constructing a new camp, which involves high costs, camps
can be moved from one location to another. The relocation of camps can only be performed
once a year, before the summer season. The distance between the origin and destination for
a relocation has very little impact on the total relocation costs. We may thus assume that the
total cost for relocating a camp depends only on the camp size (i.e., the number of trailers
it includes). All trailers have to be closed before relocation. After the relocation, all trailers
that are supposed to be in use have to be reopened again. In theory, camps from two distinct
locations can also be joined to further reduce the costs per unit. Trailers from the same camp
could also be relocated to distinct locations. In practice, these features are observed rather
rarely. For the sake of simplicity, it is hence assumed that camps can only be relocated as a
whole and that two different camps cannot be merged at the same location.
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2.4 Objective

Given that all logging and road construction demands must be covered, we must ensure that
sufficient accommodations are available to host the workers. We want to minimize the total
costs, which are composed of two parts:

• All costs involved in providing the necessary accommodations: camp construction, camp
relocation, maintenance for open trailers, closing and reopening of trailers and hosting
costs for workers.

• The transportation costs between the accommodations and the logging regions. This in-
cludes the costs for using the vehicles and an additional salary for long transportation
times.

A solution to the problem consists of the following information, given for each of the
seasons in each of the years of the planning horizon:

• For each camp construction: the location and camp size.
• For each camp relocation: the origin, destination and size of the relocated camp.
• For each camp: the number of trailers that will be closed or reopened.

An insight into the suggested assignment of work crew demands to the accommodations
may also be interesting for decision-makers. The assignment is necessary to determine the
minimum level of camp capacities. However, it is not explicitly part of the problem solution.

Throughout this work, we will refer to this problem as the Camp Size and Location
Problem (CSLP).

3 Literature review

The forestry sector has been an extensive user of Operations Research (OR) methods for
strategic, tactical and operational planning. Optimization is mainly used for supply chain
design (D’Amours et al. 2008), harvesting (Bredström et al. 2010) and transportation plan-
ning (Carlsson et al. 2009). Strong interest is shown by both the public and private sec-
tor, typically in countries where logs represent a large portion of the net exports, such as
Canada, Chile, New Zealand and the Scandinavian countries. Several recent surveys pro-
vide broad overviews of optimization in the forestry sector (see, e.g., D’Amours et al. 2008;
Rönnqvist 2003; Weintraub and Romero 2006).

Rönnqvist (2003) compares different planning levels in terms of planning horizon, allow-
able solution time and required solution quality. These characteristics strongly vary among
the different applications. Board cutting is individually decided for each tree and has to be
optimally solved within less than a second. Harvesting plans typically cover an entire year.
Such forest management plans have to be evaluated quickly to allow manual comparisons.
Thus, for problems of this category, near optimal solutions are desired within a few hours
of computation time. However, the planning includes a strategic outlook for more than 100
years. To the best of our knowledge, the problem of locating logging camps has not yet been
addressed in the OR literature. Its solution requirements are similar to those of road plan-
ning: one aims at near-optimal solutions, planning includes decisions for five years and one
can allow computation times of several hours. Mathematical programming appears to be an
appropriate tool, since it provides high quality solutions and it allows to model particular
industrial constraints.
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Several known problems present features similar to those found in the CSLP. Such prob-
lems typically belong to the family of Facility Location Problems. The CSLP can be for-
mulated as an extension of the well studied Capacitated Facility Location Problem (CFLP),
which aims at finding the optimal locations to construct an unknown number of facilities
with capacity constraints. All customer demands have to be covered and the total costs,
usually composed by costs for facility construction, production and transportation, are min-
imized. In the last decades, practical needs led to many extensions of the CFLP such as
multiple periods, multiple commodities, multiple capacity levels and multiple stages. As
demands are likely to change over time, many models focused on the dynamic (i.e., multi-
period) case of the problem in order to address dynamic aspects such as capacity reduction,
expansion and relocation.

The diversity, importance and maturity of facility location problems has been confirmed
by many recent literature surveys (Hamacher and Nickel 1998; Klose and Drexl 2005;
Melo et al. 2009; Revelle and Eiselt 2005; Revelle et al. 2008). Melo et al. (2009) focus
on the context of supply chains. Smith et al. (2009) review the development of location
analysis from its early beginning and highlights today’s most important applications. Many
of the extensions proposed for the CFLP can be found in the proposed CSLP. Camps are
translated to facilities and hosting demands to customers. The relevant literature regarding
these features will now be reviewed.

Dynamic facility location problems The CSLP contains strong dynamic aspects, since log-
ging regions tend to be harvested within a few seasons. Hence, a customer may have high
demands in some time periods and no demand at all in the other periods. Early works in
the domain of dynamic facility location were initiated by Ballou (1968) and Wesolowsky
(1973). Recent works include Albareda-Sambola et al. (2009), Canel et al. (2001), Dias
(2006), Melo et al. (2005), Peeters and Antunes (2001), Shulman (1991) and Troncoso and
Garrido (2005). Many more references can be found in the previously cited reviews as well
as in the one of Owen and Daskin (1998), which focuses on approaches that are based on
either dynamic or stochastic facility location problems.

In addition to the optimal timing and sizes for facility construction, further dynamic
features have been found beneficial to adapt to changing demand and market conditions.
Capacity expansion has been incorporated by Melo et al. (2005), Peeters and Antunes (2001)
and Troncoso and Garrido (2005). Capacity reduction or facility shut-down is addressed by
Canel et al. (2001), Dias (2006), Melo et al. (2005) and Peeters and Antunes (2001). In
an early work, Wesolowsky and Truscott (1975) considered a simple case of relocation of
facilities. Melo et al. (2005) provide an extensive modeling framework for dynamic multi-
commodity facility location problems. Their model focuses on the relocation of existing
facilities and gradual capacity transfer from existing facilities to new ones while considering
generic multi-level supply chain network structures.

Multiple commodities In some applications, customers have demands for several distinct
commodities. The models must then distinguish between the different commodities to sat-
isfy the demand for each of them as well as to control their capacity at the facilities. In the
context of the CSLP, the different work crew types (i.e., logging crews and road construction
crews) and supervisors can be modeled as different commodities.

In the multi-commodity facility location literature, models commonly assume that the
customers have an individual demand for each commodity. However, on the facility side,
the capacity constraints can be formulated in two different ways:
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1. Each facility holds an individual capacity for each of the commodities.
2. Each facility holds a global capacity for the sum of all commodities.

The first option is the more common one in the literature (Canel et al. 2001; Geoffrion
and Graves 1974; Lee 1991; Warszawski 1973). In the CSLP, we rather consider the second
case. While customers have a demand distinguished between the different commodities, the
total capacity at the camps applies to the sum of all workers, whether they are logging or road
construction workers. This idea of a common capacity for all commodities is also followed
in the modeling framework of Melo et al. (2005).

Multiple capacity levels The presence of production capacities automatically raises the
question of the dimension of such capacities. While some applications allow for several fa-
cilities at the same place, most consider only one facility per location. Facilities may have
fixed capacities or may choose among different capacity levels. Often, facility construc-
tion and unit production costs follow the principle of economies of scale, i.e., the larger
the facility, the cheaper the price per unit in terms of facility construction and commodity
production. One finds this feature in the CSLP, where camps are composed of trailers. The
more hosting trailers exist, the larger the capacity and the better common resources (such as
supplementary infrastructure) are shared. The choice of different capacity levels allows to
represent such economies of scale.

Early works considering different capacity levels are Lee (1991), Shulman (1991) and
Sridharan (1991). The choice of the capacity level is modeled as an additional variable index,
having only one variable of a certain capacity level active for each facility. The cost part
in the objective function thus corresponds to a piecewise linear function. In the literature,
this has been the most common way to represent such cost functions (Paquet et al. 2004;
Troncoso and Garrido 2005).

Holmberg (1994) and Holmberg and Ling (1997) introduce an incremental approach
to model staircase functions, where all variables up to the chosen capacity level are active.
Similar approaches have since been adapted to more complex problems (Correia and Captivo
2003; Gouveia and Saldanha da Gama 2006).

Conclusions Many of the features found in the CSLP have already been addressed in isola-
tion in the facility location literature. However, very few models consider modular capacity
levels in a dynamic context (Melo et al. 2005; Peeters and Antunes 2001; Shulman 1991;
Troncoso and Garrido 2005). These works do not address dynamic features such as facility
closing/reopening or relocation. The closest related works are those of Melo et al. (2005)
and Troncoso and Garrido (2005). The latter authors represent economies of scale for fa-
cility construction, but not for operational costs. Capacity relocation is also not considered.
Melo et al. (2005) focus on capacity relocation, but consider modular capacity decisions
only for relocation.

While many models consider closing an entire facility or reducing its capacity, none of
the reviewed works present the possibility of partially or entirely deactivating a facility for a
certain time period, as it is possible with trailers in logging camps. In addition, the capacity
constraints found in the CSLP have not yet been addressed in the context of facility location
problems.

4 Mathematical formulation

The CSLP can be modeled as an extension of the CFLP. Some of the additional features
have been considered in variations of that classical problem. However, to the best of our
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knowledge, no extension of the CFLP considered all features at the same time. In particular,
two of them have not been mentioned in the related literature:

1. Round-up (integer) capacity constraints for the camps.
2. Partial closing and reopening of trailers throughout the planning periods.

In the following, we will model the CSLP by extending the CFLP in two steps. In a first
step, a formulation for a dynamic modular (i.e., multiple capacity levels) multi-commodity
Facility Location Problem with multi-source assignment is studied. This problem will be
referred to as the DMCFLP. Then, the dynamic features are added, namely the relocation
of camps and the closing and reopening of trailers. This problem represents the CSLP as
described above.

The intermediate problem, namely the DMCFLP, is explored mainly due to two reasons.
First, to explore the impact of the additional features on the solution difficulty. Second, all
DMCFLP solutions are essentially feasible for the CSLP. As we will see later on, DMCFLP
solutions of good quality can be obtained much easier than solutions for the CSLP. Using
DMCFLP solutions as starting solutions can be helpful to solve the complete CSLP.

4.1 The DMCFLP—an extension of the CFLP

The classical CFLP, as presented by Sridharan (1995), is extended. To be more precise, the
following features are added:

• Multiple periods. We study the problem in a dynamic context, i.e., over multiple time
periods with independent demands.

• Multiple commodities. We assume the existence of different commodities, one for each
work crew type. Each customer may have independent demands for each of these com-
modities.

• Multiple capacity levels. We assume that a facility may have different capacities, i.e.,
different numbers of hosting trailers. These capacities are modular and can represent cost
structures involving economies of scale.

Due to its additional characteristics, we refer to this problem as the Dynamic Modular Multi-
Commodity Facility Location Problem (DMCFLP).

4.1.1 Input data and decision variables

Input data Consider the following input data:

• I—set of potential camp locations (facilities).
• J —set of logging/road construction regions (customers).
• K—set of possible camp sizes (with respect to the number of hosting trailers), K =

{1,2, . . . ,K}.
• P —set of existing work crew types (commodities).
• T —set of seasons (time periods), T = {1,2,3, . . . , |T |}.
• Np—number of workers in a crew of type p.
• djpt —demand (in number of crews) for commodity p ∈ P in region j ∈ J and period

t ∈ T .
• uik—total capacity (in number of workers) of a camp of size k ∈ K at location i ∈ I .
• cC

ik—construction cost of a camp of size k ∈ K at location i ∈ I .
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• cV
ijkpt —variable operational costs (including transportation and hosting costs) for the en-

tire time period t ∈ T for one crew of working type p ∈ P accommodated at a camp of
size k ∈ K at location i ∈ I and working at region j ∈ J . The total cost is typically not
linear with respect to the Euclidean distance between the work region and the accommo-
dation.

Decision variables The decision variables are:

• xijkpt ∈ R
+—total demand (in number of crews) of crew type p ∈ P assigned from a

camp of size k ∈ K at location i ∈ I to region j ∈ J at time period t ∈ T .
• yik ∈ {0,1}—1, if a camp of size k ∈ K is constructed at location i ∈ I at the beginning

of the horizon, 0 otherwise.

4.1.2 Mathematical model

The model is given by:

min
∑

i∈I

∑

k∈K

cC
ikyik +

∑

i∈I

∑

j∈J

∑

k∈K

∑

p∈P

∑

t∈T

cV
ijkptxijkpt (1)

s.t.
∑

i∈I

∑

k∈K

xijkpt = djpt ; ∀j ∈ J ; ∀p ∈ P ; ∀t ∈ T (2)

∑

p∈P

∑

j∈J

Npxijkpt ≤ uikyik; ∀i ∈ I ; ∀k ∈ K; ∀t ∈ T (3)

∑

k∈K

yik ≤ 1; ∀i ∈ I (4)

xijkpt ≤ djptyik; ∀i ∈ I ; ∀j ∈ J ; ∀k ∈ K; ∀p ∈ P ; ∀t ∈ T (5)

xijkpt ∈R
+; ∀i ∈ I ; ∀j ∈ J ; ∀k ∈ K; ∀p ∈ P ; ∀t ∈ T (6)

yik ∈ {0,1}; ∀i ∈ I ; ∀k ∈ K (7)

The objective function (1) minimizes the camp construction cost and the operational
costs. Note that the operational costs cV

ijkpt are composed by both transportation and hosting
costs. The transportation costs depend on the distance between both locations i and j as
well as the type of crew p. The hosting costs depend on the camp size k as well as the crew
type p.

The set of constraints (2) guarantees that all customer demands are satisfied. Note that
demands are likely to be fractional, as illustrated in Fig. 1. Constraints (3) require that the
hosting demands assigned to each camp do not exceed the camp capacities. Constraints (4)
ensure that only one capacity level is selected for each facility. The set of valid inequal-
ities (5), also referred to as Strong Inequalities (SI) (Gendron and Crainic 1994), provide
a stronger upper bound for the demand assignment variables. Computational experiments
show that CPLEX solves the problem more effectively when adding only the violated SIs
(using CPLEX user cuts) than when adding all SIs a priori or not adding them at all.

Non-movable accommodations In addition to logging camps, we may model accommo-
dations such as motels and apartments to host workers. We do so by representing them as
a restricted case of a camp, with two types of information: hosting costs and total capacity.
Such accommodations possess a single capacity level and cannot be relocated.
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4.2 Round-up capacity constraints

As explained above, the CSLP involves particular capacity constraints where the sum of
all demands assigned to a certain accommodation is rounded up to the next integer value.
Adding, for example, demands of 1.5 crews and 1.25 crews, one only needs a total capacity
for three crews (if all crews are hosted at the same camp) instead of four (compare Fig. 1).

We introduce additional integer variables zikpt for the integer rounding, indicating the
total number of crews of type p assigned to a size k camp at location i ∈ I at period t ∈ T .
The existing capacity constraints (3) are replaced by two new constraints (8) and (9), which
we will refer to as the round-up capacity constraints (RUC). Instead of using the continuous
sum of the facility/customer assignment variables (x variables), the capacity constraints (9)
take into account the next highest integer value, bounded by the z variables in constraints (8):

∑

j∈J

xijkpt ≤ zikpt ; ∀i ∈ I ; ∀k ∈ K; ∀p ∈ P ; ∀t ∈ T (8)

∑

p∈P

Npzikpt ≤ uikyik; ∀i ∈ I ; k ∈ K; ∀t ∈ T (9)

zikpt ∈ Z
+; ∀i ∈ I ; ∀k ∈ K; ∀p ∈ P ; ∀t ∈ T (10)

This type of capacity constraints is likely to appear in other applications. In the context
of facility location problems, scenarios can be modeled where a facility may not be able to
produce any arbitrary amount of a product, but only modular sized packages of products.

4.2.1 Strengthening the formulation

Experiments have shown that the average integrality gap increases significantly (see
Sect. 5.2 for details) when using round-up capacity constraints (8)–(10) instead of the usual
constraints (3). Consider the following aggregated demand inequalities which are known to
be redundant for the linear relaxation of the model:

∑

i∈I

∑

k∈K

uikyik ≥
∑

p∈P

∑

j∈J

djptNp; ∀t ∈ T

We will now strengthen these inequalities, based on the fact that z is integer. Substitut-
ing (2) in (8) shows that one can always round up the sum of all demands from different
regions for the same product. We replace the right hand side (RHS) of the previous inequal-
ity by Dt , where:

Dt =
∑

p∈P

⌈∑

j∈J

djpt

⌉
Np; ∀t ∈ T

We now express the resulting inequality in terms of the number of trailers instead of the
number of crews. Assuming that each trailer hosts exactly M workers, i.e., uik = Mk, we
have:

∑

i∈I

∑

k∈K

kyik ≥ Dt

M
; ∀t ∈ T

These inequalities state the minimum number of open trailers necessary to satisfy all
customer demands. We know that the RHS, the minimum number of open trailers, is always
integer. We can thus replace the RHS by St , where:
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Fig. 2 Network model to manage open and closed trailers at each location

St =
⌈

Dt

M

⌉
; ∀t ∈ T

In a final step, we aim at reducing the coefficients of the y variables on the left hand side.
Suppose that K > St . It is then sufficient that only one yik′ with k′ ≥ St is active in order to
satisfy the entire customer demand in the integer solution. That is, we may set the coefficient
of a variable yik′ to St whenever k′ ≥ St :

∑

i∈I

∑

k∈K

min{k,St }yik ≥ St ; ∀t ∈ T (11)

In the following, we will refer to these constraints as the strengthened aggregated demand
(SAD) inequalities.

4.3 The CSLP—adding partial camp closing, relocation and modular costs

In this section, the previous model will be extended with the following features that may
appear in a dynamic context:

1. Construction of new camps/trailers at any time period.
2. Closing and reopening of trailers at any time period.
3. Relocation of camps at any time period.
4. Modular costs for trailer closing/reopening and camp relocation.

This problem corresponds to the CSLP. A network flow structure, illustrated in Fig. 2,
is added on top of the previously introduced model to manage the first three features. For
each time period, two nodes for open trailers and two nodes for closed trailers are used.
Arcs between these nodes represent certain operations to modify the number of open and
closed trailers at each location and to relocate them to other locations. The flow on these
arcs indicates the number of trailers involved in the corresponding operation. New trailers
can be constructed at the beginning of any season (s arcs). Open trailers can be closed (vOC

arcs) and closed trailers can be reopened (vCO arcs). The arcs vOO represent trailers that
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were open at the beginning of the season and remain open during the current season. The
arcs vCC indicate closed trailers that are not relocated to another region. These trailers can
still be reopened for the current season. Finally, lO and lC indicate the number of trailers
that are open and closed, respectively, at each location throughout the entire season.

Relocation is allowed only for closed trailers. One could model relocation by the use
of direct arcs between all location pairs. However, this would result in very large models.
Experiments showed that this significantly increases the model size and therefore also the
difficulty of solving the problem. Instead, relocation is modeled by the use of a central node,
here referred to as a hub node (H). The flow of relocated trailers is first passed to the hub
node (wO arcs) and then further distributed to another location (wI arcs).

4.3.1 Input data and decision variables

Additional input data In addition to the previously introduced input data, additional pa-
rameters are considered. These data may already consider economies of scale with respect
to k, the number of trailers involved in the operation: cT O

k and cT C
k are the costs to reopen

and close k trailers of the same camp, respectively. The maintenance costs for a camp with
k open trailers during season t is given by cM

kt . Finally, cR
k represents the costs for relocating

a camp with k closed trailers.

Additional decision variables To incorporate the new features, some variables have to be
extended and new variables have to be added to the model. Binary variables yikt now indicate
whether the camp located at i has k open hosting trailers during period t . A separate binary
variable siqt indicates the construction of q new trailers at location i before period t . In
addition, arc flow variables for the network are added to manage the closing and reopening
of trailers: lOit , lCit , vOO

it , vOC
it , vCO

it , vCC
it , wO

it and wI
it .

Finally, binary variables are needed to incorporate modular costs: vBCO
ikt and vBOC

ikt indi-
cate whether k trailers are reopened or closed, respectively, at location i before time period t .
Variables wBO

ikt and wBI
ikt indicate whether a size k camp is relocated from or to, respectively,

location i before period t . The relocation of a camp of size k′ from location i1 to location i2

at time period t ′ is thus performed by selecting the two variables wBO
i1k′t ′ and wBI

i2k′t ′ .

4.3.2 Mathematical model

Objective function The objective function minimizes all costs: maintenance for open trail-
ers, operational hosting and transportation, trailer construction, camp relocation and trailer
reopening and closing. Note that each camp relocation involves two binary variables wBO

ikt

and wBI
ikt , while only one of them has to be considered in the objective function to attribute

the relocation costs:

min
∑

i∈I

∑

k∈K

∑

t∈T

cM
kt yikt +

∑

i∈I

∑

j∈J

∑

k∈K

∑

p∈P

∑

t∈T

cV
ijkptxijkpt

+
∑

i∈I

∑

q∈K

∑

t∈T

cC
insiqt +

∑

i∈I

∑

k∈K

∑

t∈T

cR
k wBO

ikt

+
∑

i∈I

∑

k∈K

∑

t∈T

cT O
k vBCO

ikt +
∑

i∈I

∑

k∈K

∑

t∈T

cT C
k vBOC

ikt (12)
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Demand and capacity constraints The constraints representing the part of the facility lo-
cation problem are identical to the ones in the previously presented model. However, the y

variables now represent the number of open trailers at each location and time period:
∑

i∈I

∑

k∈K

xijkpt = djpt ; ∀j ∈ J ; ∀p ∈ P ; ∀t ∈ T (13)

∑

j∈J

xijkpt ≤ zikpt ; ∀i ∈ I ; ∀k ∈ K; ∀p ∈ P ; ∀t ∈ T (14)

∑

p∈P

Npzikpt ≤ uikyikt ; ∀i ∈ I ; ∀k ∈ K; ∀t ∈ T (15)

∑

k∈K

yikt ≤ 1; ∀i ∈ I ; ∀t ∈ T (16)

xijkpt ≤ djptyikt ; ∀i ∈ I ; ∀j ∈ J ; ∀k ∈ K; ∀p ∈ P ; ∀t ∈ T (17)

Flow conservation and consistency constraints The network is modeled by the following
constraints. Constraints (18), (19), (20) and (21) represent the first nodes for open and closed
trailers and the second nodes for open and closed trailers, respectively. Note that the vari-
ables lOit and lCit do not exist for t = 0, i.e., in constraints (18) and (19), we have lOi(t=0) = 0
and lCi(t=0) = 0. If a region i ∈ I already possesses a camp at the beginning of the planning
horizon, then a constant Γit > 0 (with t = 1) indicates the number of hosting trailers of that
camp. Clearly, Γit = 0 for all t > 1. Constraints (22) guarantee that the number of existing
trailers at a camp never exceeds the maximum camp size, while (23) link the y variables to
the number of open trailers:

Γit + lOi(t−1) +
∑

q∈K

qsiqt = vOO
it + vOC

it ; ∀i ∈ I ; ∀t ∈ T (18)

lCi(t−1) + vOC
it = vCC

it + wO
it ; ∀i ∈ I ; ∀t ∈ T (19)

vOO
it + vCO

it = lOit ; ∀i ∈ I ; ∀t ∈ T (20)

vCC
it + wI

it = vCO
it + lCit ; ∀i ∈ I ; ∀t ∈ T (21)

lOit + lCit ≤ K; ∀i ∈ I ; ∀t ∈ T (22)
∑

k∈K

kyikt = lOit ; ∀i ∈ I ; ∀t ∈ T (23)

Relocation consistency constraints Equalities (26) enforce that if a camp of size k is re-
moved from a location, then a camp of the same size must be placed at another region. They
ensure that trailers of different camps will not be mixed if they are relocated at the same
time period. Constraints (24) ensure that camps are only relocated as a whole, i.e., no trail-
ers remain at the location if a camp is relocated. Constraints (25) say that a camp can only
be relocated to locations where no other camps exist. Constraints (26) ensure that camps
from different locations are not merged. Although redundant, constraints

∑
k∈K wBO

ikt ≤ 1
and

∑
k∈K wBI

ikt ≤ 1 are explicitly added to the model, since they help CPLEX generate fur-
ther cuts.

vCC
it + vOO

it ≤ K

(
1 −

∑

k∈K

wBO
ikt

)
; ∀i ∈ I ; ∀t ∈ T (24)

vCC
it + vOO

it −
∑

q∈K

qsiqt ≤ K

(
1 −

∑

k∈K

wBI
ikt

)
; ∀i ∈ I ; ∀t ∈ T (25)
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∑

i∈I

wBO
ikt =

∑

i∈I

wBI
ikt ; ∀k ∈ K; ∀t ∈ T (26)

Linking constraints for modular costs Linking constraints as suggested by Melo et al.
(2005) are used to link the continuous arc flow variables to the binary variables for modular
decisions:

∑

k∈K

kvBCO
ikt = vCO

it ; ∀i ∈ I ; ∀t ∈ T (27)

∑

k∈K

kvBOC
ikt = vOC

it ; ∀i ∈ I ; ∀t ∈ T (28)

∑

k∈K

kwBO
ikt = wO

it ; ∀i ∈ I ; ∀t ∈ T (29)

∑

k∈K

kwBI
ikt = wI

it ; ∀i ∈ I ; ∀t ∈ T (30)

Variable domains Once the y variables are fixed, the remaining subproblem defined by
the network flow structure can be stated as a Minimum Cost Network Flow Problem. All
lO arcs are then fixed according to the y values due to the equality constraints (23). Thus,
the remaining network matrix has the unimodularity property. We could thus state all arc
variables as continuous without losing their integrality property in the solution. However,
we keep integrality on the arc variables, since experiments showed that it slightly facilitates
the solution by CPLEX.

xijkpt ∈R
+; ∀i ∈ I ; ∀j ∈ J ; ∀k ∈ K; ∀p ∈ P ; ∀t ∈ T (31)

zikpt ∈ Z
+; ∀i ∈ I ; ∀k ∈ K; ∀p ∈ P ; ∀t ∈ T (32)

yikt ∈ {0,1}; ∀i ∈ I ; ∀k ∈ K; ∀t ∈ T (33)

siqt ∈ {0,1}; ∀i ∈ I ; ∀q ∈ K; ∀t ∈ T (34)

lOit , l
C
it , v

CC
it , vCO

it , vOO
it , vOC

it ,wO
it ,w

I
it ∈ Z

+; ∀i ∈ I ; ∀t ∈ T (35)

vBCO
ikt , vBOC

ikt ,wBO
ikt ,wBI

ikt ∈ {0,1}; ∀i ∈ I ; ∀k ∈ K; ∀t ∈ T (36)

Note that, for the CSLP, the SAD inequalities given by (11) are modified, replacing each
variable yik by a variable yikt .

5 Computational experiments

5.1 Instance generation and experimentation environment

In order to test the robustness of the model, instances have been generated with different
parameters. Certain data have been adapted from a real-world (RW) instance, based on data
provided by a Canadian logging company (see Sect. 6.2). Key parameters are found to be
the ones that may change the difficulty of the problem, namely:

• Problem dimension. Instances have been generated with the following dimensions (#fa-
cility locations/#customers): (10/20), (10/50), (50/50) and (50/100).
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• Distances and transportation costs. For each of the problem sizes, three different net-
works have been randomly generated on squares of the following sizes: 300 km×300 km,
380 km×380 km and 450 km×450 km. Transportation costs have been computed as ex-
plained in Sect. 2.1.

• Number of commodities. Demands are generated either only for logging and road con-
struction (i.e., two commodities) or additionally for the corresponding supervisors (i.e.,
four commodities).

• Concavity of the cost curves. Two extreme cases are considered: construction and op-
erational costs are either linear or concave. In addition, the cost curves given in the RW
instance with linear construction costs and concave operational costs are considered.

• Demand distribution. The demand for each region within each season is randomly gen-
erated so that the total demand in each season throughout all regions is similar. For each
region, the demand is either uniformly distributed over all seasons or randomly distributed
over up to four seasons.

• Cost distribution. The ratio between camp construction/relocation and transportation
costs is generated for different ratios. The transportation costs were set to 20 %, 100 %
and 200 % of the original transportation costs indicated in the RW instance.

• Initial demand coverage. Instances are generated with different numbers of initially ex-
isting camps. The total capacity of such camps covers either 0 %, 50 % or 100 % of the
total demand.

All generated instances contain ten time periods. Camp relocation costs and the costs
to close or reopen trailers have been adapted from the RW instance. The maximum camp
size K has been chosen so that a single camp with K trailers is capable to host the entire
worker demand. The combination of all different configurations explained above resulted
in 1296 instances. Experiments on all instances showed that instances are significantly eas-
ier to solve when the cost curves are linear or only two commodities (i.e., no demands for
supervisors) are used. On the other hand, instances with 50 or more potential facility loca-
tions could virtually not be solved within the imposed time limit of one hour of computation
time. The results presented throughout this paper are thus based on a subset of the instances
described above. This subset includes 216 instances: all instances of reasonable size, i.e.,
(10/20) and (10/50), excluding those which are known to be easily solved, i.e., having only
two commodities or linear cost curves.

The code has been written in C/C++ using the Callable Library of IBM ILOG
CPLEX 12.3 and has been compiled and executed on openSUSE 11.3. Each problem in-
stance has been run on a single AMD Opteron 250 processor (2.4 GHz), limited to 4 GB
of RAM. If not stated otherwise, CPLEX computation times have been limited to 60 min-
utes.

5.2 Computational results

The following variants of the problem have been considered to investigate the impact of the
different problem features on the difficulty of solving the problem:

• The DMCFLP as described in Sect. 4.1. Both versions without and with RUC constraints
(round-up capacity constraints, see Sect. 4.2) and SAD inequalities (strengthened aggre-
gated demand inequalities, see Sect. 4.2.1) are considered.

• The CSLP, as described in Sect. 4.3.

The SI valid inequalities, given by (5) and (17) for the DMCFLP and the CSLP, respec-
tively, are very effective to strengthen the model. The integrality gap of the DMCFLP with
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Table 1 Comparing the solution quality for the DMCFLP without/with RUC constraints as well as with-
out/with SAD inequalities after one hour of computation time

Inst size # Inst w/o RUC w/ RUC w/o SAD w/ RUC w/ SAD

gap % #
ns

gap % #
ns

gap % #
nsavg max avg max avg max

10/20 108 0.00 0.01 0 7.73 41.05 0 0.39 26.01 0

10/50 108 8.60 38.26 0 25.06 59.88 10 17.82 57.83 10

All 216 4.30 38.26 0 16.02 59.88 10 8.68 57.83 10

RUC constraints and SAD inequalities was found to be 20.3 % (average over the 216 se-
lected instances). Adding the SI inequalities (5) to the model decreased the integrality gap
to an average of 2.2 %. In CPLEX, valid inequalities can be added to the model either all
a priori or dynamically (called user cuts), only those that are violated during the solution
of the linear relaxation. In the following experiments, the SIs have been added as user cuts
in the case of the DMCFLP. For the CSLP, all SIs have been added to the model a priori.
Further experiments indicate that CPLEX performs best when the parameter MIPEmphasis
is set to feasibility.

5.2.1 Impact of the RUC constraints and SAD inequalities

Computational experiments for the DMCFLP (performed on all 1296 instance described
above) showed that the average integrality gap increased from 2.8 % to 6.0 % when the
RUC (round-up capacity) constraints are used within the model. This indicates that the RUC
constraints significantly complicate the solution of the problem. However, the additional use
of the SAD inequalities reduces the average integrality gap to 1.4 %.

Table 1 summarizes the average optimality gaps after one hour of computation time.
We compare three different versions for the DMCFLP. The version w/o RUC indicates the
DMCFLP, defined by (1)–(7), with common capacity constraints (i.e., no round-up capacity
constraints). The second version, denoted by w/ RUC w/o SAD, explores the impact of the
round-up capacity constraints. This problem version is thus defined by (1), (2) and (4)–(10).
Finally, we investigate the impact of the SAD inequalities. The version, denoted by w/ RUC
w/ SAD, is thus defined by (1), (2) and (4)–(11). As previously mentioned, all SIs, given by
inequalities (5) are added as CPLEX user cuts.

For each of the three versions we report average and maximum optimality gaps. The
column # ns indicates the number of instances where either no feasible integer solution has
been found or the solver ran out of memory. The results indicate that adding the round-up
capacity constraints significantly complicates the solution of the problem. For ten instances,
no feasible solution could be found. However, the additional use of the SAD inequalities
proved quite effective to improve the optimality gap.

5.2.2 Solving the CSLP and solution properties

We now explore how the difficulty of solving the CSLP is affected by the RUC constraints
and SAD inequalities. We also investigate the impact of different instance characteristics.
We show relations between the optimal solutions of the DMCFLP and the CSLP by com-
paring the number of constructed and relocated trailers. This leads to the idea of using DM-
CFLP solutions as starting solutions for the CSLP. The impact of certain properties such
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Table 2 Comparing the solution quality after one hour of computation time using different solution ap-
proaches

Inst size # Inst CSLP w/o SAD CSLP w/ SAD CSLPHeur w/ SAD

gap % #
ns

gap % #
ns

gap % #
nsavg max avg max avg max

10/20 108 28.71 55.32 41 9.13 54.06 22 6.42 20.24 0

10/50 108 – – 108 3.53 22.57 91 18.24 49.95 31

All 216 28.71 55.32 149 8.21 54.06 113 11.89 49.95 13

as the demand distribution over time, the initial camp capacity and the dimension of trans-
portation costs is evaluated.

Table 2 compares the results for different solution approaches: two approaches based on
conventional CPLEX optimization and a third approach which is explained further below.
The first approach, denoted by CSLP w/o SAD, involves the solution of the CSLP defined by
(12)–(36) using CPLEX. The second approach, denoted by CSLP w/ SAD additionally uses
the SAD inequalities (11).

The table presents average and maximum optimality gaps when compared with the best
known lower bound for each instance. In addition, the number of instances where no feasible
integer solution has been found or the solver ran out of memory (# ns) is reported. As the re-
sults indicate, the SAD inequalities improve the performance of CPLEX. Feasible solutions
can be found for 36 further instances and the solution quality improves significantly.

DMCFLP warm start solutions for the CSLP As we observed in the previous section, DM-
CFLP solutions of fair quality can easily be obtained. For the CSLP, we may have trouble
to find any feasible integer solution at all. However, a feasible solution for the DMCFLP is
also feasible for the CSLP. To convert an optimal DMCFLP solution into a feasible CSLP
solution, the y variable values of the DMCFLP solution are fixed. CPLEX then heuristi-
cally finds feasible values for the missing variables (parameter effortLevel has been set to 3).
Table 3 shows the average optimality gaps of the optimal DMCFLP solutions in the CSLP.
The average optimality gap of such solutions (except for five instances of size (10/50) where
no optimal DMCFLP solution has been found) is around 15 %. The results are then sepa-
rated by instances with certain characteristics, namely the demand distribution along time
as well as the initial demand coverage by existing camps. One would assume that DMCFLP
solutions perform better for instances where the demand is uniformly distributed over time,
since the relocation of camps seems less probable. However, the results do not show any
clear evidence of a better performance.

On the other hand, the total capacity of existing camps seems to have more impact on the
DMCFLP solution quality in the CSLP. The less camps initially exist, the better the DM-
CFLP solution quality. This is because in both versions camps have to be constructed. This
is summarized in Table 4, which reports the average number of constructed and relocated
trailers according to the demand distribution and the number of initially existing camps
(only solutions with a proven optimality gap smaller than or equal to 10 % have been con-
sidered). Instances with demand uniformly distributed over all time periods tend to have less
constructions and relocations than instances in which demand is irregularly distributed over
time. In addition, the less camp capacity is initially available, the smaller the chance that
existing camps are relocated instead of constructing new ones. Thus, new optimal placed
camps in a DMCFLP solution are more likely to be a good choice for the CSLP as well.
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Table 3 The average optimality gaps of optimal DMCFLP solutions in the CSLP

Inst size All Demand distribution Initial demand coverage

Uniform Clustered 0 % 50 % 100 %

10/20 12.8 11.6 13.9 9.2 12.9 16.1

10/50 17.2 18.8 15.7 12.1 15.8 23.9

Total 14.9 15.0 14.8 10.6 14.4 19.8

Table 4 The average number of constructed and relocated trailers within near optimal CSLP solutions

Inst size Demand distribution Initial demand coverage

Uniform Clustered 0 % 50 % 100 %

# Constructions 4.9 6.7 7.8 4.6 2.3

# Relocations 0.8 1.1 0.0 1.2 1.8

We may thus use DMCFLP solutions as warm start solutions for the CSLP. The last three
columns, denoted by CSLPHeur w/ SAD, in Table 2 indicate the results after one hour of
computation time for the CSLP (w/ SAD), when the best DMCFLP (w/ RUC w/ SAD) solu-
tion obtained after one hour of computation time is used as a warm start solution. Compared
with the conventional execution of the CSLP, CPLEX now finds feasible solutions for most
of the instances while maintaining a similar average optimality gap.

The impact of the cost ratio The ratio between transportation costs and the costs to con-
struct or relocate camps has also been found to have a strong impact on the difficulty of
solving the problem. A total of 264 additional instances of the sizes (10/20) and (10/50)
have been generated with eleven different transportation costs, set between 1 % and 3000 %
of the original transportation costs given in the RW instance. We refer to this percentage as
TC %. All instances contain sufficient camp capacities to cover 50 % of the average demand
per season.

Figure 3(a) and (b) illustrate the difficulty of solving the generated instances for the CSLP
subject to their TC % ratios (in one hour of computation time). For each of the TC % cost
ratios, the number of instances where no feasible solution has been found (see Fig. 3(a))
and the average optimality gap of the final solutions (see Fig. 3(b)) are reported. The results
indicate that the problem gets more difficult to solve when TC % = 100. With TC % val-
ues greater than 1500, it seems that the solution of the problem gets slightly easier again.
Figure 3(c) shows the average number of constructed and relocated trailers within the final
solutions (again, only solutions with a proven optimality gap smaller than or equal to 10 %
have been considered). The results indicate that the number of constructed trailers grows
faster than the number of relocations when the transportation costs increase.

Yearly camp relocation All previous experiments have assumed that camp relocation is
allowed after each season. In the case of the Canadian logging company that provided the
real-world instance, relocation is possible only once a year. We investigate the difficulty
of solving this slightly simplified problem, considering all instances (ISall). We use the
CSLPHeur approach, i.e., we first solve the DMCFLP with a time limit of one hour and
then use the best solution as a starting solution for the CSLP, also limited to one hour of
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Fig. 3 The impact of the transportation cost ratio on (a) the number of CSLP instances where no solutions
have been found, (b) the average optimality gaps and (c) the average number of constructed and relocated
trailers in near optimal solutions

Table 5 Results (ISall) with CSLPHeur when camp relocation is allowed only once a year

Inst size # Inst gap % # ns # opt Time (s)

10/20 324 4.3 0 134 3992

10/50 324 14.6 17 24 5664

50/50 324 24.2 134 12 7173

50/100 324 19.7 295 31 7447

Total avg 1296 11.5 446 201 4984

computation time. The results, summarized in Table 5, show that instances of reasonable
size (i.e., 10/20 and 10/50) can be fairly well solved. Most of the larger instances exceed
either the given memory limit of 4 GB or CPLEX capabilities to solve the problem in the
given time limit.

6 Case study

In this section, we analyze the planning solutions proposed by our model for two planning
periods of our industrial partner. Each of the two planning periods spans five years. Each
year is divided into a summer and a winter season. For the first planning period, we consider
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Fig. 4 Total demand (in average number of workers per day) throughout all seasons

the activities performed by the company throughout the harvest period 2006 to 2010. We
aim at simulating the decisions made by the company and compare them with the decisions
suggested by the mathematical model. The second planning horizon considers the harvest
planning for the next five years, starting in 2011.

6.1 Comparative study for planning period 2006 to 2010

In this study, we simulate the activities performed by the company on two different levels:
first, construction and relocation of logging camps and, second, the allocation of worker
demand to accommodations. The results are then compared to the solution provided by the
mathematical model.

6.1.1 Data description

The company performed logging and road construction activities in an area which is di-
vided into approximately 4000 different regions. These regions are geographically clustered
to a total of 38 regions. The planning period starts at the summer season in 2006 and ends
after the winter season in 2010. The logging and road construction activities were subject
to significant variations throughout the seasons. The total average demands (in number of
workers per day) for logging and road construction in each season are illustrated in Fig. 4.
Note that the demands at each region are not necessarily clustered within subsequent sea-
sons. Logging crews are formed by six workers, while road construction crews contain three
workers. Demands for three logging supervisors and one road construction supervisor are
estimated in proportion to the regions’ work crew demands. All 38 working regions as well
as the locations of the company’s camps are available for potential camp construction or re-
location. Detailed data for the entire road network, composed by roads categorized into four
different conditions, are available. A simplified version is illustrated in Fig. 5. Logging and
road construction regions are indicated by the green areas. Each road type allows a different
vehicle average speed, such that transportation times and costs are computed fairly accu-
rately. Costs take into account gasoline, vehicle renting and additional salary due to long
travel times.

Available accommodations and camp relocations A village is located in a central location
between the regions of forestry activities. According to the company, approximately two
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Fig. 5 Simplified illustration of the logging regions and the road network

out of five crews live in the village and may thus be hosted at zero costs. We thus roughly
estimate that 40 % of the total worker demand may be hosted at the village, paying only
the transportation costs. In addition, a practically unlimited number of hotel accommoda-
tions is available at the village for a price of 170$ per person per night, including 54$ for
food.

In addition to the village, three logging camps from an external company are available.
In the map, these camps are indicated by (capacity in parentheses in number of workers)
E1 (65), E2 (40) and E3 (120). The latter has been relocated to location E4 after the winter
season in 2008. External camps can be used on demand at an estimated price of 170$ per
person per night (food included).

The company itself held three camps in the beginning of 2006, indicated by C1 (60), C2
(96) and C3 (48). We assume that these camps hold trailers each with a capacity for twelve
workers. After a few years, the location of camp C1 was two far from the new logging
regions. Parts of this camp have thus been relocated to join the camp located at C2 after the
winter season 2009, resulting in a larger camp for up to 144 workers. The costs for these
camps involve significant economies of scale and thus depend on the size of the camp. The
maintenance costs are around 1020$ per day for a camp with a single trailer (capacity for
twelve workers) and around 3400$ for a camp with ten trailers (capacity for 120 workers).
In addition, we assume a daily cost of 54$ per worker for food. Maintaining large camps
may thus be much cheaper than using the external camps and accommodations.

As can be recognized, the available capacities are very large compared to the total number
of workers active in logging and road construction. This is due to the fact that other workers
involved in forestry activities, such as forest management, tree planting, etc. use the camps.
In addition, some capacities are used by the mining industry. However, the priority is always
given to logging and road construction workers. We can thus assume that the entire capacity
is available.
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Table 6 Cost distribution for the simulated company activities and the optimized solution

Costs ($) Simulated company activities Optimized decisions

Hosting 2,683,588 2,770,588

Transportation 1,848,021 1,931,367

Maintenance 1,600,222 1,419,187

Trailer change 164,328 110,713

Sub-total 6,296,159 6,231,855

Construction 975,000 0

Relocation 302,470 0

Total 7,573,630 6,231,855

6.1.2 Comparison to the proposed planning

We now compare the activities performed by the company with the planning proposed by
the mathematical model. As previously mentioned, we compare the planning decisions on
two different levels:

1. Availability of capacities. We compare the decisions regarding camp construction and
relocation.

2. Worker demand allocation. We compare the allocation of workers from working regions
to accommodations.

Decisions regarding camp construction and relocation All optimization models are based
on the CSLP model, defined by (12)–(36) and using the SAD inequalities (11) to facilitate
the solution. We simulate the activities performed by the company by fixing all decisions
regarding available capacities exactly as stated in Sect. 6.1.1. To be precise, we fix the re-
location of external camp E3, the relocation of camp C1 and the construction of camp C3.
As all construction and relocation decisions are fixed, the model is solved to optimality in
a few minutes. The results for this scenario are compared to the optimal solution for a sce-
nario where only the initial capacities of the company are fixed. External camp E3 is still
relocated (as this is not a decision made by the company). However, the relocation of C1
and the construction of C3 are not fixed. The optimal solution for this scenario has been
obtained within 20 hours of computation time (nine hours to prove optimality < 1 %). In
contrast to the decisions made by the company, the optimal solution does not suggest any
camp construction or relocation. Instead, the cheapest solution is obtained when using the
available capacities at the same locations as found in the beginning of the planning. Table 6
summarizes the cost distribution for both scenarios. Without costs for construction and re-
location, the costs for both scenarios are very similar. This suggests that, for the activities in
the given time period, the initial locations of the existing camps, as well as their capacities
were just as good as the locations and capacities achieved by the construction and relocation
of camps. Adding the costs for construction and relocation to the costs for the company’s
activities results in a total cost that is much higher. Note that both scenarios assume optimal
demand allocation. We will explore this topic further below.

Decisions regarding the demand allocation The previous analysis simulates the com-
pany’s activities regarding the decisions of where to locate or relocate camps. For both sce-
narios, the results assume that the demand allocation is optimal, i.e., the amount of workers
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Table 7 Cost distribution for optimal and heuristic demand allocation

Costs ($) Optimal Heuristic

Hosting 2,683,588 1,437,822

Transportation 1,848,021 3,093,429

Maintenance 1,600,222 2,424,474

Trailer change 164,328 186,881

Sub-total 6,296,159 7,142,606

Construction 975,000 975,000

Relocation 302,470 302,470

Total 7,573,630 8,420,076

from each region hosted at each accommodation, as well as the capacity level maintained at
each camp during each season. As many cost factors have to be considered when allocating
the workers to the accommodations, a manual allocation planning is likely to be far from
optimal. Of course, many other factors may impact the decisions when allocating certain
working regions to accommodations, such as the preferences of certain workers.

For the given planning period, the actual allocation of the workers to the available ac-
commodations is not known. We thus use a simple heuristic to simulate the manual allo-
cation planning. The allocation is performed for each season. We give priority to regions
with large worker demands. Logging and road construction demands are thus considered in
non-increasing order. We then select the accommodation that has the lowest cost for trans-
portation and hosting. To compute the real cost, one should also consider the maintenance
costs for open trailers at the company’s camps. However, these costs depend on the actual
occupation level of the camp and are thus difficult to estimate at the beginning of the heuris-
tic planning. We thus do not include the maintenance costs in the total costs to emphasize
the use of the company’s own camps. Table 7 compares the cost distribution for the optimal
and the heuristic demand allocation. From an economic point of view, the optimal demand
allocation is 11.8 % cheaper when comparing the costs involved in hosting, transportation
and camp/trailer maintenance. Note, however, that a planning as suggested in the optimal
scenario is likely not to be completely feasible in practice. Many other factors may impact on
such planning, such as the preferences of workers, changes in demand and other uncertain-
ties. Workers will most likely prefer not to change their accommodation too often throughout
a working season. An analysis of the suggested demand allocation in the optimal scenario
shows that in most cases this criterion is met. Working crews are allocated to the same ac-
commodation throughout the entire season. Only in a small number of cases, two different
accommodations are suggested to host the same crew throughout a season. Although the
allocation of workers to accommodations includes many other factors not considered in our
analysis, the large cost difference found in our comparison emphasizes the difficulty of a
cost efficient manual planning and suggests a potential to perform demand allocation in a
more cost efficient manner, while respecting all other requirements.

6.2 Analysis of proposed planning for period starting in 2011

Based on the logging and road construction demands for the harvesting period 2011 to 2015,
we now analyze the decisions proposed by the mathematical model.
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Table 8 Cost distribution in the optimal solutions for both scenarios

Costs ($) Scenario 1 Scenario 2

Hosting 1,879,905 1,476,083

Transportation 2,261,809 1,353,561

Maintenance 2,983,112 3,365,490

Trailer change 252,521 242,751

Construction 0 0

Relocation 0 302,470

Total 7,377,347 6,740,355

Data description The data contains 29 clusters of logging regions. The road network is
similar to the one shown in Fig. 5. However, logging regions, as well as the locations of
available accommodations, are different. The demands in this planning are much more bal-
anced over the seasons than it was the case in the previous planning period. Demands require
up to eight logging and four road construction crews. The complete demand is easily cov-
ered by five existing accommodations: the village and four camps (with 2, 3, 4 and 4 trailers,
respectively). All other assumptions are similar to the ones made for the previous planning
period.

Solution analysis for different scenarios Data about whether or not the company intends
to construct or relocate camps were not available. We therefore do not compare to decisions
of the company, but rather to two extreme scenarios to show how the proposed model may
help in future decisions: one scenario where available capacities are not changed at all and
one where capacities may be changed if beneficial. The first scenario thus considers only the
existing accommodations at their original locations. Camp construction and relocation are
thus not allowed. The second scenario assumes the original locations of the initially existing
accommodations, but additionally allows the construction of new camps and the relocation
of existing ones (once a year). Both scenarios are based on the CSLP model, defined by
(12)–(36) and the SAD inequalities (11). Table 8 shows how costs are distributed in the
optimal solution of each scenario. Scenario 2 suggests the relocation of a camp with four
trailers after the fifth season. The additional camp relocation costs are outweighed by the
savings in the transportation costs, which reduced by more than 40 %. This results in a very
beneficial solution, reducing the total costs by 8.6 %.

Clearly, the reduction of the transportation costs is directly linked to the traveled time and
distance. As can be seen in Table 9, the average distance traveled by the crews is reduced
significantly (23 % and 16 %, respectively, in Scenario 2) when the camp is relocated. Fi-
nally, Table 9 also reports the proportion of time during which existing trailers are open. This
percentage considers all existing trailers throughout all time periods. One can observe that
slightly more trailers are opened in Scenario 2, i.e., the existing camps are better used than
in the previous two scenarios. Maintenance costs increase, but lower transportation costs
may be involved as such trailers are closer to certain logging regions.

7 Conclusions and future research

A mixed-integer programming model for the location of logging camps has been presented.
This model extends the classical Capacitated Facility Location Problem by several features.
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Table 9 Usage of existing
trailers and travel distances for
the both scenarios

Scenario 1 Scenario 2

Trailers open 49.4 % 54.8 %

Average travel distance (km):

Logging crews 114 88

Road construction crews 129 109

Next to the well known features of multiple periods, multiple commodities and multiple
capacity levels, further extensions include the partial and temporary closing of facilities,
particular capacity constraints that include integer rounding and the integration of economies
of scale on several levels of the cost structure. In addition, the model allows the extensions
and relocation of existing facilities. Such integer rounding capacity constraints can be useful
in other applications. As they increase the integrality gap and therefore the difficulty to solve
the problem, new valid inequalities are derived to effectively reduce this integrality gap.

Instances based on a large variety of different properties have been generated. Exper-
iments on these instances illustrated the impact of the different problem features on the
difficulty to solve the problem. It is shown that general purpose solvers such as CPLEX are
capable of solving most of the instances up to a realistic size in reasonable time, when using
optimal solutions of a simplified problem as warm start solution for the entire problem. Case
studies based on data from a Canadian logging company for two planning periods have been
presented. The first study indicates a strong potential for economic savings on two differ-
ent decision levels: where to locate the logging camps, as well as how to allocate worker
demand from the working regions to the accommodations. The second study proposes a
planning for the upcoming planning period of the company. It proposes the relocation of
an existing camp, resulting in potential savings of more than 8 % of the total costs when
compared to the scenario where camps stay at their current location.

Though most of the smaller and medium sized instances can be solved in reasonable time,
some of the instances remain unsolved. The models for larger instances typically exceed the
memory limitations of current standard computers, such as the ones used in the experiments.
In order to solve these instances, more sophisticated solution techniques are necessary, such
as mathematical decomposition. Interesting extensions of the model for future research in-
clude the possibility of partial relocation of camps, as well as the use of trailers of different
sizes.
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